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SUMMARY

The determination of mean streamline patterns by moving the test point in the
direction of the measured velocity is shown to produce cumulative errors that are
unacceptable. A two-dimensional algorithm that minimizes these errors is presented
and is analytically validated using simple potential flows. The algorithm is
extended to three-dimensional flows and is again validated analytically. Finally,
as an example of a typical application of the algorithm, mean streamlines are mea-
sured in a complex, turbulent flow with a three-dimensional laser anemometer.

INTRODUCTION

Complex, highly turbulent fluid flows are difficult to measure or visualize
experimentally. In general, flow surveys are conducted along straight-line paths
to create a grid, or mesh, of locations where velocities have been measured. Using
those data, vector plots or arrow diagrams on the grid can provide pictorial repre-
sentations of the flow patterns from which the scientist, it is hoped, can gain
insight into the fluid mechanics of the flow.

Where streamline patterns are desired, an alternative approach to using vector
plots is to measure the mean values of the three orthogonal components of the veloc-
ity at a given location, compute the flow direction, move the measurement probe a
short distance in that direction, and repeat the procedure. However, in order to
accomplish such measurements, the velocity-measuring device must be capable of
accurately measuring all three velocity components, even in regions of stagnation
and reversed or recirculating flow. Whereas hot-wire anemometers and pressure-based
devices are not acceptable in this kind of flow, recent advances (refs. 1 and 2) in
three-dimensional, laser-Doppler anemometry (3D LDA) now make such measurements
feasible,

The present paper will briefly review a two-dimensional algorithm for stream-
line tracing that has been developed by Orloff and Snyder (ref. 3). This algorithm
reduces the systematic "drift" of the LDA test point away from the correct stream-
line that occurs when the above tangential motion technique is used. Then, the two-
dimensional algorithm is extended to fully three-dimensional flows, and experimental
results are presented of a 3D LDA streamline tracing in a complex turbulent flow in
the Ames 7~ by 10-Foot (Low Speed) Wind Tunnel.

TWO-DIMENSIONAL LDA STREAMLINE TRACING

Orloff and Snyder (ref. 4) and Snyder et al. (ref. 5) have reported a 3D LDA
measurement technique based on statistics and sampling theory that allows measure-
ment to a prescribed accuracy of either a mean velocity component or the mean flow




direction. Having applied the technique, they have shown it to be accurate for
constructing vector or arrow plots of the mean flow directions along a survey line

in a turbulent flow (ref. 5). Also, as shown in figure 1(a), they attempted to follow
a mean streamline in a turbulent flow by using the stepping method described above,
and the resulting path of the LDA test point was shown (by using reverse traces) to

be other than a true fluid streamline (ref. 5).

To prove that the discrepancy is not a result of measurement inaccuracies asso-
ciated with the 3D LDA, Orloff and Snyder (ref. 3) have used simple two-dimensional
potential flows with variable curvature and inflection to simulate the LDA tracing
technique. Their results demonstrate that the errors occur because the step segments
are always straight lines that are tangent to the local streamline. Figure 1lb demon-
strates both that a cumulative error is incurred when straight-line motion in the
direction of the measured velocity is used and that the numerical trace tends to
cross streamlines. More importantly, the numerical reverse-path segments (moving
opposite to the velocity direction starting from a point on the forward path) show
precisely the same divergence to the outside of the forward trace as is evidenced in
the experimental reverse-path traces in figure 1(a). A more exact motion algorithm
that minimizes the error is described in detail in reference 3 and is summarized
below. :

Figure 2(a) depicts a local streamline section in the YZ plane that is concave
upward (d?Z/dY? > 0). The measured velocity is assumed tangent to the streamline
at the current measurement location (point 5). Because the flow may be in either
direction along the path, two opposing velocity vectors are shown at point 5, and the
forward vector is denoted at an angle 6¢ and the reverse vector at an angle 6y .
The angle ¢ 1is the change in the step direction that is necessary to correct for
the error incurred by moving tangentially.

General expressions for the Cartesian corrections AY' and AZ' (as indicated in
figure 2(b) that describe all possible combinations of concave-upward or concave-
downward flow, and positive or negative slope locations, are developed in reference 3
and are given by

AY' = -2(STEP)sin &§/2 sin(8/2 + aB6) (1)
AZ' = 2aB(STEP)sin 8/2 cos(§/2 + aB6) (2)

where
a = sign of (cos 6) (3)

(4)

™
]

: (YZ - zy)
sign of =3
Y

§ = sin~ Y (STEP/2R) . (5)

and 6 may be either 6. or 6. and 6 = tan '(Z/¥). The derivatives shown in the
above expression for B ~denote a parametric differentiation with respect to the
point number n =1, . . ., 5, as indicated in figure 2(a). The parametric descrip-
tion must be used to prevent the curve-fitting routine from encountering double-
valued functions in the calculation of the radius of curvature (double-valued func-
tions can occur as the streamline transitions between concave-upward and




concave-downward where Z 1is the dependent variable and Y 4is the independent
variable).

The distance STEP is chosen between minimum and maximum values, SMIN and SMAX,
respectively, that are appropriate to the flow being studied. The value is calcu-
lated within this interval based on the radius of curvature and inflection of the
streamline. For the first five points along a streamline trace, SMIN is used, and
the motion is in the direction of the measured velocity. For subsequent points, the
radius of curvature R 1is computed using a local parametric quadratic fit through
the current test-point location and the previous four points. In regions of local
streamline inflection, the step size must not abruptly increase to SMAX because
large deviations from the streamline may occur. To prevent this, the radius of cur-
vature at the previous location, ROLD, is compared with the radius of curvature at
the current location, R, and the ratio ROLD/R is computed. As the test point moves
into a region of inflection, the ratio becomes less than one, and the step size is
decreased to prevent significant deviation from the streamline. STEP is therefore
given by

STEP = SMIN + (SMAX - SMIN)VR/RINF (RAT) (6)
where RAT is a quantity defined by

RAT

(ROLD/R)?> if ROLD/R < 1
RAT = 1 if ROLD/R 2 1

RINF is a constant radius that influences the relative rate of variation of the step
size with changing radius of curvature. RINF is usually chosen to be a radius at
which the curvature is effectively '"flat" relative to the scale of the flow.

The ability of the foregoing correction scheme to compensate for the error
inherent in tangential stepping is shown, in figure 3, for a simple potential flow
wherein the path goes through moderate curvature and two points of inflection.
Although the corrected path is not exact, it is significantly better than the path
that results from tangential stepping. Most noticeable is the deviation that occurs
for the uncorrected path along the second half of the trace. This is a result of
the convergence of the streamlines as the flow accelerates over the top of the
cylinder. 1In this region, any small spatial error in the stepping motion is ampli-
fied because it represents a large percentage of the distance between streamlines;
subsequently, as the trace proceeds downstream (where the streamlines are farther
apart) the spatial extent of the error becomes more pronounced. In view of this,
the accuracy of the corrected stepping is quite reasonable.

THREE-DIMENSIONAL CORRECTION ALGORITHM

Streamline tracing in three dimensions is more involved than for the two-
dimensional case just described. Figure 4 depicts the five most-recent locations of
the LDA test point along a measured three-dimensional streamline. The LDA provides
a measurement of the velocity vector V at point 5. The projections of V into the
XY, YZ, and ZX planes are denoted by Vyy, Vyz, and Vzx, respectively, and the
orientations of the projections in the planes are given by the angles vy, 6, and a,
respectively. From this information, the next test point location must be determined.
Notice, however, that the stepping motion is completely specified using only two
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planes, and the motion, when viewed in the third plane, is uniquely determined. In
order to explain which of the three planes are used for the three-dimensional algo-
rithm that accomplishes the correction for curvature, a flow chart (fig. 5) is
presented.

A parabolic least-squares parametric curve fit through the five most-recent .
locations yields the first derivatives X, ¥, and Z, and the second derivatives X, Y,
and Z. The radii of curvature for the streamline projections into the three planes
are given by

(iz + fz)a/z 3

A T

(12 + 22)3/2
R s B N

52 s2y3/2
R, = |LE FX)
ZX 2% - X2 P

Using these radii, step sizes are computed for each plane according to equation (6),
and are denoted by STPXY, STPYZ, and STPZX.

To determine which two of the three planes should be used to best describe and
predict the motion to the next location, the magnitudes of the projected velocities
Vxys Vyz, and Vzy are compared, and the plane containing the smallest projection is
the one that is disregarded. Consider, for example, a streamline that lies very
nearly along the Y-axis. Here, the projection of the streamline in the ZX plane
provides very little path information because the points will be c¢lose together in
that plane. Figure 5 indicates that the procedure will be similar for any two
planes; as an example of the subsequent procedure, the case wherein the ZX plane
is the non-critical (disregarded) plane is followed through.

The two remaining planes (XY and YZ) are designated as primary and secondary;
the plane with the smallest radius of curvature is the primary plane. The step size
is chosen to be the smallest of STPXY and STPYZ, and it is labeled simply STEP;.

The flow chart shows the procedure to be followed when the local radius of curvature
in the YZ plane is smaller than the radius of curvature in the XY plane. The two-
dimensional correction equations (1) through (5) are applied (as shown in fig. 6) to
the YZ plane using Ryz and STEP:; the results give Yygy =Y + AY' and

Zygw = Z + AZ'. Now, the motion in the secondary plane (XY plane) must agree with
the motion inthe primary plane (YZ plane) to the extent that the Y-location is the
same (point P). To compute the remaining correction, AX', the coordinates (Y,,Xo)

are given by

XO = XS + KXYOL'B' COS Yy (8)
Yo = Y5 - RXYOL'B' sin vy (9)
where
vy = tan Y (X/Y) (10)
4 ORIGENSL P |
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sign of (cos v) (11
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It can be shown that the ordinate value of point P is
- - ARV IR2 _ 271/2
Xew = %o = @B Ry = Ciygy = Y07 (13)

It should be noted that the directions of Vyz and Vyy will be precisely tan-
gent to the predicted curvature only where the streamlines are circular. Generally,
as the curvature varies, the two-dimensional or three-dimensional corrections will
cause the streamline trace to lag slightly behind, thereby keeping the test-point
motion from reacting too quickly to changes in curvature. Also, for experimental
measurements, statistical variations in the velocity direction will be somewhat
damped by the corrections. Therefore, if equation (13) is used to determine the
X-coordinate, Xygy., then point P will always be located on the circle of radius
Rxy, and the damping effect will be lost. To maintain the effect, a correction AX'
Vxy that may not be precisely tangent to the estimated radius-of-curvature circle.
To accomplish this, notice that the step size in the secondary plane is constrained
to take on the value

STEP, = [(Xgpo = X% + (Yypy - YS)Z]I/2 (14)

In other words, using STEP, and Ryy in the two-dimensional correction equations for
the XY plane will give a correction AY' that results in the same value Yygw @s
was obtained for the YZ plane. Additionally, AX' is. given by

AX'" = 2a'B'(STEP,)sin(8'/2)cos(§'/2 + o'B'y) (15)
where L
| - s
§'" = sin (STEPZ/Zny)

To verify that the three-dimensional algorithm provides acceptable correctioms,
the method was checked by simulation, again using a simple analytical flow. Stream-
lines were generated for a potential flow consisting of a vortex of strength T, a
sink of strength Q, and a uniform axial velocity U. Figure 7(a) shows the projec-
tion of several streamlines into the YZ plane; for clarity, figure 7(b) shows the
projection into the ZX plane of only the streamline that passes through the start-
ing location, (X,Y,Z) = (0,4,0). The YZ and XZ planes are presented in figure 7(a)
and 7(b) because they are convenient for displaying the three-dimensional nature of
the flow; they are not necessarily the primary and/or secondary planes. Instead of
indicating the primary and secondary planes, it is easier to indicate on the figure
the plane that has been disregarded (labeled between heavy dots in the figure).

This flow is a good test case because the streamlines have varying degrees of curva-
ture in the three planes. Hence, the primary and secondary planes will not be the
same in all regions of the flow, and the algorithm must transition smoothly when the
planes change as the test point moves along the streamlines. The only deviation
from the true streamline occurs near the end of the trace where the minimum step
size (0.1 cm) is too large (relative to the local radius of curvature) to provide

an accurate trace. Experimentally, this problem is solved because the engineer can
reduce the minimum step size as the radius of curvature is observed to decrease.



THREE-DIMENSIONAL LDA STREAMLINE TRACING — EXPERIMENTAL RESULTS

In conjunction with V/STOL basic aerodynamics research, the 3D LDA instrumen-—
tation described in reference 2 was used to measure the flow associated with a
5-cm-diam cold jet issuing normally from a surface plate into the wind tunnel cross-
flow. The jet velocity (V;,.) was 85 m/sec and the velocity ratio (Vjet/V,) was 8.
Using the criterion that tﬂe angles obtained by projecting the measured velocity
into the three planes (fig. 4) be statistically accurate to within 10° (as discussed
in ref. 5), the streamline traces presented in figure 8 were obtained as real-time,
on-line displays during the course of the experiment. Each of the streamlines
(except for those labeled F and R) were begun at 5 cm above the surface plate and
at various Y-values, as indicated. For clarity, not all of the traces shown in the
XY plane are also shown in the ZX plane. It should be emphasized that near the
jet and in its wake the local turbulent intensity reaches values in excess of 40%;
hence, a streamline represents the mean fluid trajectory.

The accuracy of the experimentally determined trajectories was tested by con-
ducting a reverse-path measurement along a streamline that had been previously mea-
sured in the forward direction. Because statistical variations caused by measurement
variations could induce random deviation from the streamline, as explained in refer-
ence 3, a streamline section was chosen where the turbulence intensity was lower, and
the projected vectors could thereby be experimentally determined to better than 2°
over the entire trace. The forward trace is labeled F in figure 8, and the
reverse-path trace, labeled R, begins where the forward trace ends. Notice that
the reverse trace deviates slightly from the forward trace for the first five steps
before the curve-fitting routine becomes effective; this is a result of the cumula-
tive error due to tangential stepping. Subsequently, however, no further systematic
error is incurred. The reverse streamline remains nearly parallel to the forward
trace in the ZX plane, and the reverse trace actually converges to the forward
trace in the XY plane (probably due to statistical variations, as noted in
reference 3).

CONCLUDING REMARKS

An algorithm has been presented that can be used with a three-dimensional
laser-Doppler anemometry system to determine accurately the mean streamline patterns
in a complex, turbulent, three-dimensional flow. Cumulative, systematic errors
caused by tangential stepping can be successfully removed by using the formalism
that has been presented. Also, when the algorithm is made an integral part of the
on-line software, it provides a powerful diagnostic tool for gaining insight into
. the fluid dynamics of the flow.
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(a) Experimental 3D LDA results from reference 5 showing divergence toward outside of
curvature for reverse paths.

e FORWARD PATH
- - — — REVERSE PATH
seroemmneseen— POTENTIAL FLOW STREAMLINES

(b) Numerical simulation of LDA streamline tracing showing crossing of streamlines
and divergence of reverse paths due to cumulative errors.

Figure 1.- Results of straight-line stepping in the direction of the velocity vector
(from ref. 3).
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(a) Concave-upward flow; 8§ 1is correction angle, R 1is estimated radius of curvature
at point 5.
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(b) Cartesian corrections AY' and AZ' for forward- and reverse-flow directions at
point 5.

Figure 2.~ Correction scheme used to reduce error created by tangential stepping.
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Figure 3.- Using radius-of-curvature algorithm to follow streamlines in a simulated
potential flow with local inflection; uncorrected result is shown for comparison
SMIN = 0.2 cm; SMAX = 0.6 cm.
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Figure 4.- Velocity vector V at point 5 along the streamline is projected into
three planes to define magnitudes and angles.
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Figure 5.~ Flow chart for three-dimensional correction algorithm.
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